Constructions and complexity of secondary polytopes
نویسندگان
چکیده
منابع مشابه
Constructions for chiral polytopes
An abstract polytope of rank n is said to be chiral if its automorphism group has two orbits on flags, with adjacent flags lying in different orbits. In this paper, we describe a method for constructing finite chiral n-polytopes, by seeking particular normal subgroups of the orientation-preserving subgroup of n-generator Coxeter group (having the property that the subgroup is not normalized by ...
متن کاملthe effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing
بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...
15 صفحه اولConstructions and obstructions for extremal polytopes
In the fall of 2001, I was finishing my computer science undergrad studies and Martin Skutella suggested that I take the course " Linear optimization " , a course offered to beginning math grad students and taught by Prof. Günter Ziegler. Following his advice, my fellow student Roman Wagner and I took the course, and failed badly. We lacked the necessary linear algebra and so the teaching assis...
متن کاملExtremal Constructions for Polytopes and Spheres
Acknowledgements It is only fitting to continue the tradition and cite Manuel Abellanas [1] in first place. Without him and his constant encouragement, none of this would have happened. all combis in Berlin, for all the support and the excellent working environment christoph eyrich, for my´sliwska and teaching me all the λ α τ ε χ i know (and then some) Volker Kaibel, for the strongly non-polyn...
متن کاملFacets of Secondary Polytopes
The secondary polytope of a point configuration A is a polytope whose face poset is isomorphic to the poset of all regular subdivisions ofA. While the vertices of the secondary polytope – corresponding to the triangulations ofA – are very well studied, there is not much known about the facets of the secondary polytope. The splits of a polytope, subdivisions with exactly two maximal faces, are t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1990
ISSN: 0001-8708
DOI: 10.1016/0001-8708(90)90077-z